Step of Proof: squash_thru_equiv_rel
12,41
postcript
pdf
Inference at
*
2
I
of proof for Lemma
squash
thru
equiv
rel
:
1.
T
: Type
2.
E
:
T
T
3.
((
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
)))
4.
a
:
T
5.
b
:
T
6.
E
(
a
,
b
)
E
(
b
,
a
)
latex
by ((((D 3)
CollapseTHEN (D 6))
)
CollapseTHEN (D 0))
latex
C
1
:
C1:
3. (
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
))
C1:
4.
a
:
T
C1:
5.
b
:
T
C1:
6.
E
(
a
,
b
)
C1:
E
(
b
,
a
)
C
.
Definitions
t
T
,
True
,
T
origin